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Allen Cell Types Database  

TECHNICAL WHITE PAPER: 
GLIF MODELS 

 
OVERVIEW 

 
Generation of detailed biophysical data through standardized, systematic experimental methods facilitates the 
creation of computational models that simulate or predict cell behavior. The data created as part of the Allen 
Cell Types Database can be used in multiple different types of models and simulations. For simulations of neural 
networks, there is a tradeoff between the size of the network that can be simulated and the complexity of the 
model used for the individual neurons. A series of models of increasing complexity was constructed to reproduce 
the spiking behaviors of the recorded mouse and human neurons. Starting with a leaky integrate-and-fire model, 
three generalizations were added: a) after-spike currents which represent the slower effects of ion channels 
activated by an action potential, b) subthreshold voltage and spike-dependent changes in threshold caused by 
the activation and inactivation of ion channels and c) voltage and threshold reset rules derived, from the 
electrophysiology data. These rules determine how the threshold and voltage are reset after a spike and depend 
on the state prior to the action potential. Electrophysiological stimuli were specifically designed to estimate some 
of the parameters of the generalizations. Following these initial estimates, a threshold parameter was further 
tuned to optimize the reproduced spike times generated by a training noise stimulus. The optimization method 
was based on maximizing the likelihood of a model neuron with intrinsic noise exactly reproducing the spike 
train observed in the experiment. The model performance was subsequently evaluated on a test stimulus: for 
different time scales, the fraction of the variance of the neuronal response which was explained by the model 
was computed. 
 
To explore the level of model complexity needed to describe the firing behavior of neurons, linear models were 
created with increasing levels of complexity. Standard leaky integrate-and-fire (LIF) models were the starting 
point, followed by progression to more generalized leaky integrate-and-fire (GLIF) models. In this Technical 
White Paper, models of different levels of complexity are defined. Then, the stimuli necessary for model creation 
are described. Next, methods for extracting model parameters from the electrophysiology data are discussed. 
After this, a description of the post-hoc optimization process and error functions by which threshold is 
additionally tuned is provided. Finally, metrics for evaluation of how well the models reproduce the spike times 
of the neurons are described.  
 

  
Figure 1. Flow chart for the primary components of the parameter fitting.  

The structure is similar to those used in previous studies (Mensi et al. 2011). 
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MODEL DEFINITIONS 

Below the five different GLIF models are defined in order of increasing level of complexity.  Figure 2 
illustrates the iterations between the state variables in the model equations. Figure 8 shows the progression 
of models for two neurons. 
 

 

Figure 2. Interactions between state variables for different levels.  

 

Leaky Integrate-and-Fire (GLIF1:LIF) 
The leaky integrate-and-fire (LIF) neuron was a hybrid system characterized by  

1. An evolution equation for the membrane potential V(t) (which is the only state variable in this case) as 

a function of the neuron’s capacitance (C), membrane conductance (G), resting potential (EL), and the 
time dependent external current (Ie): 

 

, 

2. A reset rule if the membrane potential becomes larger than a threshold  
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Leaky Integrate-and-Fire with Biologically Defined Reset Rules (GLIF2:LIF-R) 

LIF-R had evolution equations for two state variables: the membrane potential V(t) and a threshold Θs(t) which 
was updated by spikes and decays back to zero with a temporal constant bs 

  , 
along with a reset rule if the membrane potential becomes larger than a threshold, which has both a constant 

(Θ∞) and a spike-induced (Θs(t)) component:  

 
The update to the spike-dependent component of the threshold is additive with a δΘs added after every spike. 
The update to the membrane potential has multiplicative coefficient fv, and an additive one δV. 
 
Leaky Integrate-and-Fire with After-spike Currents (GLIF3:LIF-ASC) 
In LIF models, the rapid membrane potential fluctuations due to the fast voltage-activated (i.e. sodium and 
potassium) ion channels during a spike were ignored. However, the ion channels activated by a spike could 
have effects over longer time scales. As the sharp membrane potential transitions during an action potential 
were stereotypical, the longer term effects were modeled as additional currents, which had predefined time 
scales (kj), a multiplicative constant (Rj) which is typically set to 1, and an additive constant (Aj) to each current 
following a spike. 

 

 

The update rule, which applies if , changes the 

 
 
 
Leaky Integrate-and-Fire with Biologically Defined Reset Rules and After-spike Currents (GLIF4:LIF-R-
ASC) 
Integrating the biological reset rules with the after-spike currents (described above) led to a model defined by: 

 
 

The update rule, which applies if , 
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Leaky Integrate-and-Fire with Voltage Dependent Threshold, Biologically Defined Reset Rules, and 

After-spike Currents (GLIF5:LIF-R-ASC-AT) 
Generalized leaky integrate-and-fire (GLIF) neurons were a hybrid system characterized by an evolution 
equation for the state variables and a reset rule if a spike occurred. For the LIF-R-ASC-AT, the state variables 
were the membrane potential V(t), a set of after-spike currents Ij(t), and a threshold which had spike (Θs) and 
membrane potential (Θv) dependent components. It was assumed that these state variables evolved in a linear 
manner between spikes: 
 

 
 
Where C represented the neuron’s capacitance, G the membrane conductance, EL the resting membrane 
potential, Ie the external current, ki the time constants of the after-spike currents, bs and bv the time constants 
of the spike- and voltage-dependent components of the threshold, and a the voltage dependence of the 
threshold. 
 

A spike was generated if  , and the state variables were updated according to the reset 
rules: 
 

  
 
where the value immediately after the spike, (t+) was related to the value immediately before the spike (t-) via a 
set of update parameters: f represented the fraction of the prespike value of a variable which was maintained 
after the spike, and δ represented the values updated by a spike.  
 
PARAMETER FITTING 

Criteria for Model Creation 
For a GLIF model to be created, a base set of stimuli (referred to as “sweeps”) had to pass quality control (QC). 
For a model of any level to be created, the following sweeps had to pass QC:  
 

 One subthreshold long square (in order to estimate Maximum Likelihood Based on Internal Noise 

(MLIN) optimization parameters) 
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 One subthreshold short square (to estimate threshold) 
 One suprathreshold short square (to estimate threshold) 
 Two noise 1 (training) 
 Two noise 2 (testing)  

 
In addition, for any model requiring reset rules (i.e., LIF-R, LIF-R-ASC or A LIF-R-ASC-AT), a set of triple short 
square sweeps had to be available. For a description of these stimuli, see the Electrophysiology Overview in 
the Documentation tab. The noise stimuli were required for model optimization and testing, while the other 
stimuli were needed for parameter extraction as described below. Only sweeps that passed QC were used in 
either preprocessing or optimization. 
 
Data Preprocessing 
Before parameter fitting, there was a preprocessing stage with the primary goal of calculating basic properties 
of the electrophysiological data (such as the resting potential and spike times) and removing the rapidly varying 
potential that occurs during a spike.  
 
Resting potential [EL]: The resting potential was defined as the mean resting potential of the noise 1 sweeps as 
calculated in the Electrophysiology Overview in the Documentation tab (averaging the pre-stimulus 
membrane potential). 
 
Spike initiation detection: For a detailed description of how spikes were detected please see the Action Potential 
Identification section of the Electrophysiology Overview in the Documentation tab.   
 
Spike cutting: The sections of the voltage traces influenced by the highly non-linear ion fluctuations during the 
action potential were not included in the fitting of the subthreshold elements. The duration of the spike, which 
was removed from the trace, was calculated by aligning all of the action potentials of noise 1 to the spike 
initiation (Figure 3). Then a linear dependence was fit between the voltage at spike initiation (prespike voltage) 
and the voltages at each time point in a window of 1 to 10 ms after spike initiation (postspike voltages). The 
duration of the spike was then chosen by considering the linear fit of each prespike and postspike combination.  
The fit which minimized the residuals was chosen to define the spike duration and voltage reset rules described 
below (Figure 4). 

 
Figure 3. Spike cutting.  

The action potentials are excluded from model fitting. All spikes from the noise 1 stimuli are aligned. Dots represent spike initiation and 
termination found by minimizing the residuals from a linear regression between prespike voltage and postspike voltage in a window 1 
to 10 ms after spike initiation.  

 
Voltage reset rules [V(t+)]: When the model spiked, the voltage was reset according to rules that depended on 
the model type. In the LIF and LIF-ASC models, the voltage was reset to the resting potential.  For the LIF-R, 
LIF-R-ASC, and LIF-R-ASC-AT models, the postspike voltage was reset via rules extracted from the 
electrophysiological traces during the spike cutting calculation described above. The voltage of the model was 

http://help.corp.alleninstitute.org/display/celltypes/Documentation
http://help.corp.alleninstitute.org/display/celltypes/Documentation
http://help.corp.alleninstitute.org/display/celltypes/Documentation
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reset by Vma = slope*Vmb + intercept, where Vmb was the voltage of the model before the spike and Vma was the 
voltage of the model after the spike (Figure 4). The intercept and slope were calculated via the linear regression 
fit to the prespike voltage and postspike voltages explained in the Spike Cutting section above.   

 
Figure 4. Reset rules were found by fitting a line between the voltage at spike initiation and the voltage at spike termination.   
In the LIF-R, LIF-R-ASC, and LIF-R-ASC-AT models, voltage reset is calculated by inserting the model voltage when it reaches threshold 
into the equation defined by the line. Note that the axes on this plot are converted into the model frame of reference by subtracting the 
resting potential and the prespike non-linearity correction. This correction is applied to the voltage reset rules. 
  
 
Parameter Fitting 
All fitting (and optimization) requiring noise stimuli were performed on the training noise set (noise 1). The 
holdout noise stimuli (noise 2) were reserved for testing to protect against “overfitting”. Descriptions of the 
specific fitting calculations follow.  Brackets denote the variable notation in the model equation section above. 
 
Capacitance [C] and Resistance [1/G]: Capacitance and resistance were calculated via a linear regression of 
the subthreshold noise in the first epoch of noise stimulation within the three-epoch noise sweeps (this stimulus 
did not elicit any spikes).  
 
After Spike Currents: The membrane potential for a leaky integrate-and-fire neuron with after-spike currents 
I_j(t) evolved according to the equations outlined first under the LIF-ASC section. 
 
For all of the GLIF model levels where after-spike currents were included (LIF-ASC, LIF-R-ASC, and LIF-R-
ASC-AT), after spike currents were modeled using exponential decaying basis functions with an amplitude and 
a time scale. The time scales and amplitudes were obtained by providing two from a set of five exponential 
decaying basis currents with varied time scales (1/kj) ([3.33, 10, 33.3, 100, 333.33] ms) to a generalized linear 
model (GLM). The GLM was used to calculate the resistance and amplitudes corresponding to each basis 
current by regressing the sum of the derivative of the voltage, the external current divided by the capacitance 
and the leak current (dV/dt + Ie/C) against the basis currents and leak term. C, and EL were calculated as 
mentioned in the above text. The GLM was run with all combinations of two of the five possible time scales 
leading to a choice among (5C2 = 10) pairs of basis currents. The optimal pair of basis currents chosen was the 
one which resulted in the maximum log-likelihood value.  
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The basis currents, with their respective amplitudes, were summed together to obtain the total effective after-
spike current. To ensure that the GLM estimates were not affected by the very large currents present during a 
spike, the regression was always performed using the voltage trace with the spikes removed as mentioned in 
the Spike Cutting section above. 

 
Instantaneous threshold [Ө∞]: The model neuron spiked when the voltage of the model crossed the threshold 
of the model. An estimate for the instantaneous threshold was the voltage at spike initiation of the lowest 
amplitude suprathreshold short square. This was an essential parameter, and it was tuned in the post-hoc 
optimization of every model. 
 
Spike component of the threshold [Өs]: The evolution of the threshold of LIF-R, LIF-R-ASC, LIF-R-ASC-AT 
contains a “spiking component” of the threshold. This contribution to the threshold represented the effect spiking 
had on the threshold of the neuron due to inactivation of voltage-dependent sodium channels. The inactivation 
could be interpreted as a rise in the threshold of the neuron, and the movement from the inactive to a closed 
state could be modeled as a linear dynamical process. The change in threshold was fit with an exponential, and 
the values of its amplitude and time constant were calculated from the triple short square sweep set data (Figure 
). For each blip in the triple short square data that produced a spike, the voltage at spike initiation (the threshold) 
was calculated. In this case, the mean of the threshold of the first spike was taken to be the triple short square 
instantaneous threshold. For all spikes that were not “first spikes,” the time since the last spike was calculated 
(referred to as an ISI). An exponential was then fit to the ISI versus threshold data (Figure 5). The exponential 
was forced to decay to the value of the triple short square instantaneous threshold (the threshold of the first 
spike in each short square triple).   

 

 
Figure 5. The spiking component of the threshold is defined by an exponential function fit to the time between spikes and the 
voltage at spike initiation of the triple short square data set.   
Different colors in data represent different sweeps.  Black dots denote spike initiation. 
 
Subthreshold voltage component of the threshold [ӨV]: LIF-R-ASC-AT contained both a “spiking” component of 
the threshold (see above) and a “subthreshold voltage” component of the threshold. The subthreshold voltage 
component represented the effect of subthreshold membrane potential on the threshold (e.g., voltage 
dependence of sodium channel reactivation). The voltage component of the threshold evolved according to the 
last equation under LIF-R-ASC-AT.  
 
The exact solution for the above evolution equation was then used to obtain initial estimates for the parameters 
av and bv using a Nelder-Mead simplex optimization. 
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Post-Hoc Optimization 
After the parameters were extracted from the electrophysiological data as described in the “Iterative Parameter 
Fitting” section, an optimization step was performed. During optimization, the instantaneous threshold was 
optimized using a Nelder-Mead simplex algorithm (Python scipy module scipy.optimize.fmin). Figure 9 shows 
the rastergrams of optimized models for two neurons.  
 
Forced-spike Model Paradigm  
During optimization, each spike should be fit without erroneous after-spike current history affecting the fitting of 
the subsequent spikes. Therefore, the model was forced to spike at the times the neuron spikes (Figure 6). The 
model continued to run regardless of whether or not the voltage of the model crossed the threshold of the model. 
The model voltage, threshold, and after-spike amplitudes were forced to reset at the time the neuron spiked. 
The reset rules were denoted in the GLIF model section above. When a model was run in its normal forward-
running manner, the prespike values of the voltage, V(t-), threshold, Ө(t-), and AS currents, Ij(t-), were the values 
of the model at the point where the model voltage crossed the model threshold. In the forced spike paradigm, 
to ensure that the voltage model was reset below the threshold of the model, the prespike voltage was set equal 
to the prespike threshold, V(t-) = Ө(t-) at the time of the neuron spike. Note that this reset only affected LIF-R, 
LIF-R-ASC, LIF-R-ASC-AT, where the prespike voltage affected the postspike voltage. 
 

 
Figure 6. The MLIN function is evaluated during a forced-spike model paradigm.  
Translucent colored lines are neuron voltage traces from several repeats of the same stimuli. Solid colored lines are corresponding model 
traces forced to spike at the time of the biological data. Dashed lines are model thresholds. Black tick marks denote non-spike bins specified 
in the MLIN optimization function. Red tick marks denote spike bins. The dots represent the location within the bin where the voltage 
difference between the model voltage and model threshold was minimized. Note that the model was run with a resting potential set equal 
to zero. Here the data traces are shifted so that their resting potential has a mean equal to zero. 

 

Objective Function: Maximum Likelihood Based on Internal Noise (MLIN) 
Similar to a series of previous studies (Paninski, Pillow, Simoncelli, 2004; Dong et al. 2011; Mensi et al. 2012; 
Pozzorini et al. 2013), the likelihood that the observed spike train was obtained by the model was maximized. 
However, the exact method of constructing the likelihood was different in that the noise is not tuned but rather 
uses a direct estimate of the biological neuron’s internal noise (Maximum Likelihood based on Internal Noise) 
was used. 
 
Because these GLIF models were deterministic, estimating the likelihood required adding a source of noise 
external to the model. Rather than searching for the parameters of this noise, a parametric description of the 
internal noise of each neuron was used (Figure 7). As this internal noise could depend on the membrane 
potential, and the most relevant potential was near threshold, the variation in membrane potential during the 
steady state period of the largest subthreshold square pulse response was characterized. 
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The probability density of the neuron being at a potential v away from its mean was fit with an exponentially 
decaying function (denoted by “expsymm” in Figure 7): 
 

 
 
This variation was considered to be additive to the membrane potential of the deterministic neuron. This allowed 
the computation of the probability that a neuron with the given noise would produce a spike if the deterministic 
model had a difference between threshold and membrane potential:  
 

 
 

 
 
where c represented the cumulative distribution of the intrinsic noise. 
 
The likelihood of the model producing a set of spikes at the times the biological neuron produces them was: 
 

 
However, the model neuron must both produce spikes when the biological neuron does, and not produce spikes 
when the biological neuron does not.  
 
The likelihood of a model neuron not producing spikes was not independent for two nearby time points, as the 
intrinsic noise had a nontrivial autocorrelation. To estimate the likelihood of the model neuron not producing 
spikes at the times the biological neuron does not produce spikes, one sample for the internal noise was drawn 
for each time period of the autocorrelation, and following this time scale a new independent sample was drawn. 
As such, the inter-spike intervals were binned with bin sizes equal to the autocorrelation (typical autocorrelations 
time scales were much smaller than the inter-spike intervals (Figure 7)). The grid times started from a spike 
time and advanced by the autocorrelation time scale, ending at a predefined short time (5 ms) before the next 
spike. To estimate the likelihood of a neuron not producing a spike within a bin, the minimal difference between 
threshold and membrane potential within the bin was chosen, which generated the grid differences: 
 

 
 
The log likelihood of the entire spike train being exactly reproduces was 
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Figure 7. Parameters of the MLIN objective function were extracted from the data.   
A distribution of voltages is created from the tailing end of the largest amplitude subthreshold square pulse available (top panel). This 
distribution is then fit by a symmetrically decaying exponential function denoted as expymm in the plot legends. The width of the non-spiking 
bins is chosen via a fit of the autocorrelation.  
 

Simplex 
Parameters were optimized to minimize MLIN using a simplex algorithm (Nelder-Mead). To optimize normalized 
parameters, the parameters of instantaneous threshold and after-spike amplitudes themselves were not 
optimized. Instead, the parameters remained at the values provided by the preprocessor, and multiplicative 
factors (coefficients) of these parameters were optimized.  
 
To ensure that the optimization routine did not return a sub-optimal local minimum, the overall optimization was 
rerun three times. Each time the overall optimization was rerun, the coefficients were randomly perturbed 
between an interval of +/- 0.3 of their last found optimized value. Within each of the overall reruns, the stability 
of the convergence was confirmed by reinitializing the algorithm (i.e. re-inflating the simplex) three times at the 
optimal position in parameter space with a small random perturbation within an interval of +/- 0.01 and then re-
running the simplex.  
 
Because the voltage dynamics were governed by a first-order linear differential equation, the voltage dynamics 
were forward simulated over a single time step using an exact Euler time stepping method. The timestep was 
chosen to be 0.2 ms. The current that forces the dynamics was averaged across the timestep. 
 

MODEL EVALUATION OF SPIKE TIMES 
 
After all parameters of the model were optimized, the activity of the models was determined using an Euler 
exact method. The spike times of the model were evaluated against the spike times of the neuron. Two metrics 
were used to evaluate how well the models do at reproducing the spike times of the neuron. The first was a 
widely used correlation-based method published by Schreiber et al. 2003. The second metric (used on the 
website) was the explained temporal variance described below (Figure 6), which similarly to the reliability 
focused on how well the temporal dynamic of the response is captured by the model, but it has a value of 0 if 
the model is at chance. 
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A spike train, ST, was represented as a time series of binary numbers. All numbers in the ST were zero unless 
a spike occurred: a spike was denoted with a one. Any spike train could be converted into a single train 
peristimulus time histogram, stPSTH by convolving a ST with a Gaussian. 
 
In the case where there were many repeats of the same stimulus, a peristimulus time histogram (PSTH) could 
be calculated by taking the mean of the stPSTH at each instant in time. If there were n stPSTHi denoted with 
index i, where i goes from 1 to n, i=1,2...n, the PSTH was equal to the column mean of the stPSTHi: 

 

 

The variance in spiking output of neurons could be described by the variance of the PSTH. In general, the 
explained variance (EV) between any two PSTHs (multiple or single train) would be: 
 

 
 
The explained temporal variance by the mean across-trials PSTH of the neuron EVD would be an upper limit on 
how well the model could perform: 
 

 
 

where i denotes the ith data stPSTH and n denotes the total number of data sweeps. 
 
Since the models here were deterministic, the pairwise explained variance of the data with the model could be 
calculated by taking the mean of the explained variance between every data stPSTHD and the model PSTHM. 
 

 

where i denotes the ith data stPSTH and n denotes the total number of data sweeps. 
 
If the ratio of the pwEV of the model to the data versus the pwEV within the data was equal to 1, the model was 
performing maximally well. The ratio of the pairwise explained variance by the model to that by the multiple trial 
average was reported. 
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Figure 8. Illustration of the five GLIF models from two different transgenic lines (Htr3a 477975366 and  Rorb 314822529). The injected 
current, Ie(t), is plotted at the top in black. In all panels, the model trans-membrane potential, V(t), is pictured in blue (spike rasters are 
marked below), and the threshold, Theta, in dashed green. For models that contain afterspike currents, the total current is in red.  The scale 
bar applies to all panels except to the injected current. GLIF1: Equivalent to the standard LIF model, when V(t) reaches the constant 
threshold, a spike is produced. After a short refractory period, V is reset to a constant value.  GLIF2: The threshold Өs modestly increase 
with each spike, and decays to a constant. When V(t) reaches Theta s, the neuron spikes. After the refractory period, both V and Ө are 
reset to a value which is dependent on the state of the neuron before the spike.  GLIF3: Every action potential induces afterspike currents 
which decay back to zero. The level of induction depends on the state of the neuron before the spike. GLIF4: Here, spike-induced changes 
in threshold and afterspike currents are combined and reset for all variables which are dependent on the state of the neuron before the 
spike. GLIF5: The addition of a voltage-dependence to the threshold Ө.  
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Figure 9. Rastergrams of biological data and all optimized model levels for 'hold out' test data for the two example cells: Htr3a 
477975366 and  Rorb 314822529. Injected current shown in black. Black rasters are spikes from recorded neurons to repeated current 
injections. Colored rasters correspond to the five different, deterministic models. The current injection is 3 s long. It is observed that as the 
GLIF1 and GLIF2 do not have a spike frequency adaptation mechanism, they have trouble reproducing simultaneously the firing patterns at 
multiple input amplitudes.  

 
 

PYTHON VERSION 
 
All code was implemented using python 2.7.8 via Anaconda 2.1.0 (64-bit) compiled with GCC 4.4.7 20120313 
(Red Hat 4.4.7-1), Numpy version 1.9.0, Scipy version 0.14.0.  
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APPENDIX 

   Table 1. State variables added by each mechanism.  

Model Symbol Variable 

LIF V(t) Membrane potential 

ASC Ij(t) After-spike currents 

R Өs(t) Spike-dependent threshold component 

TA ӨV(t) Voltage-dependent threshold component 

The first level, LIF, contains only the membrane potential V(t). When history dependent reset rules are added 
in the second level LIF-R, the sate variables are V(t) and Θs(t). LIF-ASC adds afterspike currents, with the state 
variables V(t) and Ij(t), and their combination, LIF-R-ASC has V(t), Θs(t) and Ij(t). Adding the mechanisms which 
has a component of the threshold which is dependent on the membrane potential between spikes, LIF-R-ASC-
TA leads to the state variables being V(t), Θs(t), ΘV(t) and Ij(t). 

 
 
   Table 2. Parameters added by each mechanism. 

Model Symbol Parameter Fit From Post-hoc 
Optimized 

LIF C Capacitance V during low amplitude noise No 

LIF G Membrane conductance Subthreshold V during noise No 

LIF EL Resting potential Resting V before noise No 

LIF  Instantaneous threshold Short square input Yes 

R fv Voltage fraction following rest All noise spikes No 

R V Voltage addition following rest All noise spikes No 

R bs Spike-induced threshold time 
constant 

Triple short square No 

R  Threshold addition following reset Triple short square No 

ASC Aj Afterspike current amplitudes Subthreshold V during noise Yes 

ASC kj Afterspike current time constants Subthreshold V during noise No 

TA a Adaptation index of threshold Prespike V during noise No 

TA bv Voltage-induced threshold time 
constant 

Prespike V during noise No 

 

 


