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BIOPHYSICAL MODELING – ALL ACTIVE 

OVERVIEW 
 
Single-cell characterization and model-development is key towards the creation of cell type taxonomies and 
their characterization. Specifically, with regards to computational model-development, a host of models of 
varying features and complexity are being developed. The ones described herein are biophysically realistic 
representations of neurons that include dendrites populated with active, Hodgkin Huxley-type nonlinear 
conductances. 
 
Active dendritic conductances are one of the hallmarks of cortical neurons as they critically impact their input-
output relationship: active dendritic conductances substantially impact synaptic integration properties along the 
neural morphologies as well as the somatic spiking response (Stuart et al., 2007). As such, we describe an 
effort to create single-cell representations based on slice electrophysiology and morphology reconstruction data 
that capture such dendritic nonlinearities. To set up such biophysically realistic, single-neuron model 
optimizations, the Allen Institute collaborated with the Blue Brain Project (BBP, Switzerland, 
http://bluebrain.epfl.ch) to utilize their expertise in the development of such all-active single-cell biophysically 
realistic models (Druckmann et al., 2007; Hay et al., 2011), morphology analyses (Markram et al., 2015) and 
usage of very large computational resources such as the Blue Gene Q (Reimann et al., 2013; Markram et al., 
2015). The workflow for setting up and performing these optimizations is shown in Figure 1. 
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Figure 1. Summary of the generation of the all-active biophysically detailed single-neuron models.  
Schematic illustration of the different steps involved in the generation of the single-neuron models. 

 

FEATURE ANALYSIS 
 
The optimization procedure of the single-neuron models is feature-based and attempts to populate the somatic, 
axonal, and dendritic properties in such manner as to capture features of intracellular somatic responses to a 
number of standardized current stimulation waveforms. Specifically, for each neuron experimentally whole-cell 
patched, biocytin-filled and morphologically reconstructed, a host of quality control criteria are applied to assess 
the quality of the electrophysiology recordings (See Electrophysiology Overview Technical White Paper in 
Documentation) as well as the morphological reconstruction (Morphology Overview Technical White Paper in 
Documentation). Given these criteria are met, the experiment is passed on for the analysis of subthreshold and 
spiking responses (Figure 1). Specifically, 11 electrophysiological features are extracted for each experiment 
and their mean and standard deviation (std) is computed for a particular stimulation waveform (Table 1). 
Notably, if equal or more than two repetitions of the same stimulation waveform exists (majority of the 
experiments), then the std of that particular waveform is used. If only a single repetition of the experiment 
existed, the default value of 5% is used for the std. 
 
All features were extracted using the Electrophys Feature Extraction Library (eFEL) developed at the Blue Brain 
Project (https://github.com/BlueBrain/eFEL). For a list and description of all 11 features used for building the 
computational models see Table 1 and Figure 2. The electrophysiology stimuli used for the feature extraction 
and optimization were: ShortDC, LongDC, Ramp, and LongDCSupra (see detailed description in the 
Electrophysiology Overview Technical White Paper in Documentation). For every feature, an absolute standard 

score was calculated 𝑍𝑖 =
|𝑓𝑖−𝜇𝑖|

𝜎i
 with the feature value (fi) measured from the output traces of the models, 𝜇𝑖 

and 𝜎𝑖 the experimentally measured mean and standard deviation for the 11 features in the respective cells. 
 
 
Table 1. Electrophysiology features used to constrain all-active, multi-compartmental models. 

Feature Name Description 

mean_frequency Mean frequency calculated as number of action potentials during 
stimulation divided by time between stimulus onset and last spike in 
Hz. 

ISI_log_slope Slope of loglog interspike intervals (ISI). 

adaptation_index2 Normalized average difference of two consecutive ISI starting from 
second ISI. 

time_to_first_spike Time from stimulus onset to peak time of first spike in ms. 

time_to_last_spike Time from stimulus onset to peak time of last spike in ms. 

AP_width Mean of width at -20 mV of action potential (AP) in ms. Mean for all 
AP. 

AP_height Height at peak of action potential in mV. Mean for all AP. 

min_voltage_between_spikes Minimum voltage between two action potentials in mV. Mean for all ISI. 

steady_state_voltage_stimend The average voltage during the last 90% of the stimulus duration in 
mV. 

voltage_base The average voltage during the last 90% before stimulus onset in mV. 

voltage_after_stim The average voltage between 25% and 75% between end of stimulus 
and end of recording in mV. 

 

http://help.brain-map.org/display/celltypes/Documentation
http://help.brain-map.org/display/celltypes/Documentation
https://github.com/BlueBrain/eFEL
http://help.brain-map.org/display/celltypes/Documentation
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MODEL CONFIGURATION 
 
Morphology 
Morphological reconstructions of neurons were analyzed using Blue Brain Project algorithms before placing into 
the workflow for optimization and model generation. Specifically, attention was paid to the relationship between 
dendritic diameter and the branch order. In general, the diameter of dendrites decreases with increasing 
distance from the soma resulting in a negative slope in the diameter-branch order relationship (Stuart et al., 
2007). The diameter-branch order relationship was analyzed for all morphologies and only those that showed 
an overall negative slope were accepted (i.e. overall decrease in dendritic diameter with increasing distance 
from the soma). Notably, some irregularities were observed along dendritic reconstructions with localized 
increases in diameter for farther away compartments. A limit of 15% was set on the (normalized) diameter 
increase per branch order: morphologies with local dendritic diameter increases larger than the limit were 
flagged and removed from the queue. 
 
The compartments of excitatory neurons were separated into axon initial segment (AIS), soma, basal dendrites, 
and apical dendrites. For inhibitory neurons, there was only a single dendritic zone. The full axon was not 
simulated, but only the AIS. The AIS was represented by two fixed length sections with a total length of 60 µm 
and a diameter obtained from the reconstructed morphology. 
 
Active and Passive Properties 
In all models, passive and active properties were optimized in the same fitting procedure. For passive properties, 
one value for the specific capacitance (cm), passive conductance (g_pas), passive reversal potential (e_pas), 
and cytoplasmic resistivity (Ra) was uniformly distributed across all compartments. Notably, the values of these 
parameters were part of the genetic optimization procedure. Active channel mechanisms were uniformly 
spatially distributed in the AIS, soma, and dendrites with every zone receiving a separate set of channels as 
shown in Table 2. 
 
Apart from the spatial distribution, the ion channels were identical with those in the “perisomatic models” (see 
Neuronal Models: Biophysical-Perisomatic in Documentation). With the following exceptions, these channels 
were similar to those as described in Hay et al. (2011):  The fast and persistent sodium currents have been 
replaced with an alternative kinetic model formulation from Carter et al. (2012) where the rate of inactivation 
depends allosterically on the extent of channel activation (NaV.mod). The slow inactivating potassium current 
has been replaced by two other potassium current models: one representing a Kv1-like current (Kd.mod) (Foust 
et al., 2010) and another representing a Kv2-like current (Kv2like.mod) (Liu and Bean, 2014). Additionally, the 
original M-current has been replaced by a model from rat CA1 pyramidal neurons (Im_v2.mod) (Vervaeke et 
al., 2006). This ion channel composition resulted in enhanced performance of the resulting models (as 
compared to the experimental data) with the specific equations and parameters described in the provided “.mod” 
files that define each mechanism for the NEURON simulation environment. All these active conductances were 
modeled using a Hodgkin-Huxley formulation. 
 
The intracellular Ca2+ dynamics were modeled using a first-order ODE that simulated the entry of Ca2+ due to 
the transmembrane current into a 100 nm sub-membrane shell with buffering/pumping (CaDynamics.mod). In 
addition to cm, e_pas, Ra, and the densities of active and passive ion channel conductances, also the time 
constant of Ca2+ removal (decay) and the ratio of free Ca2+ (gamma) were included as free parameters in the 
optimization procedure. The complete list of free parameters and their minimum and maximum values as used 
in the optimization are shown in Table 2.  
 
In total, the models were optimized with 26 free parameters: 18 active conductance densities, 4 intracellular 
Ca2+ dynamics parameters, and 4 passive parameters.  
 
 
 

http://help.brain-map.org/display/celltypes/Documentation
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Figure 2. Illustration of all electrophysiological features. 

 
 

Simulation Conditions 
Simulations were performed in NEURON using the variable time step method. The equilibrium potentials of Na+ 
and K+ were set to values calculated from the internal and external solutions used in the in vitro experiments 
(ENa = +53 mV, EK = –107 mV). The equilibrium potential of Ca2+ was calculated during each time step by 
NEURON using the Nernst equation using [Ca2+]o = 2 mM and the value of [Ca2+]i at that time (resting [Ca2+]i 
was 100 nM). The temperature of the simulation also matched the temperature of the recording. All cells for 
which models were built were recorded at a temperature near 34°C (Electrophysiology Overview in 
Documentation). For active conductances based on data recorded at temperatures differing from these 
conditions, the kinetics were scaled with a Q10 of 2.3 (Hay et al., 2011).  
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  Table 2. Ionic conductances of excitatory neurons. 

   AIS Soma Dendrites 

Passive properties cm (0.5 : 10 F/cm2) 

 g_pas (1e-7 : 1e-2 S/cm2) 

 e_pas (-110 : -60 mV) 

 Ra (50 : 150 -cm) 

Sodium 
(NaV.mod) 

gbar_NaV 
(1e-7 : 5e-2  S/cm2) 

gbar_NaV 
(1e-7 : 5e-2  S/cm2) 

gbar_NaV 
(1e-7 : 5e-2  S/cm2) 

Transient potassium 
(K_T.mod) 

gbar_K_T 
(1e-7 : 1e-2  S/cm2) 

  

Delayed rectifier 
(Kd.mod) 

gbar_Kd 
(1e-7 : 1e-2  S/cm2) 

  

Kv2-like potassium 
(Kv2like.mod) 

gbar_Kv2like 
(1e-7 : 1e-1  S/cm2) 

  

Kv3-like potassium 
(Kv3_1.mod) 

gbar_Kv3_1 
(1e-7 : 1  S/cm2) 

gbar_Kv3_1 
(1e-7 : 1  S/cm2) 

gbar_Kv3_1 
(1e-7 : 1  S/cm2) 

SK-type potassium 
(SK.mod) 

gbar_SK 
(1e-7 : 1e-2  S/cm2) 

gbar_SK 
(1e-7 : 1e-2  S/cm2) 

 

Low-voltage activated 
calcium (Ca_LVA.mod) 

gbar_Ca_LVA 
(1e-7 : 1e-2  S/cm2) 

gbar_Ca_LVA 
(1e-7 : 1e-2  S/cm2) 

 

High-voltage activated 
calcium (Ca_HVA.mod) 

gbar_Ca_HVA 
(1e-7 : 1e-4  S/cm2) 

gbar_Ca_HVA 
(1e-7 : 1e-4  S/cm2) 

 

Calcium dynamics 
(CaDynamics.mod) 

gamma_CaDynamics 
(5e-4 : 5e-2 %) 

gamma_CaDynamics 
(5e-4 : 5e-2 %) 

 

 
decay_CaDynamics 

(20 : 1000 ms) 
decay_CaDynamics 

(20 : 1000 ms) 
 

Hyperpolarization-
activated (Ih.mod) 

 gbar_Ih 
(1e-7 : 1e-5 S/cm2) 

gbar_Ih 
(1e-7 : 1e-5 S/cm2) 

M-like potassium 
(Im_v2.mod) 

  gbar_Im_v2 
(1e-7 : 1e-2  S/cm2) 

 

 

OPTIMIZATION PROCEDURE 

Genetic Algorithm 
For the optimization, the C++ optimiser framework from the Blue Brain Project was used (Markram et al., 2015). 
This framework integrates the NEURON simulation environment, the indicator-based evolutionary algorithm 
(IBEA) from the optimisation library PISA (Bleuler et al., 2003), and the feature extraction library eFEL. For each 
model the evolutionary algorithm was run twice with two different initial random seeds each with a population 
size of typically 1024 individuals on 512 cores of a BlueGene/P system for 100 generations. After the 
optimization, the two best individuals with the smallest sum of their objective values for each seed were selected 
to be tested in the model generalization procedure. Taking into account the generalization results, the best 
solution among these four models was selected and became the final electrical model (Figure 3). 
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Figure 3. Illustration of experimental and model traces.  
The somatic intracellular voltage traces for various stimulation protocols for an experiment (red) and the associated all-active biophysically 
realistic model (blue) developed via the optimization framework. 

 

Model Evaluation 
Once the best model was selected, all stimulation protocols from the experiment were replayed – importantly, 
these not only included the stimulation waveforms used to produce the model (ShortDC, LongDC, LongSupra, 
and Ramp) but various “noise” input waveforms. Response of the model to the latter ones was used to evaluate 
the model in terms of various metrics such as explained variance and waveform similarity (Figure 4). 
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Figure 4. Noise stimulation is used to evaluate the model. 
Noise stimulation waveforms are administered as part of the model evaluation step (red: experiment; blue: simulation). One of the measures 
used to assess the quality of the model is the explained variance metric. For the illustrated experiment, the explained variance is 0.84. 

 

MODEL GENERALIZATION 

Limitations of the Model 
While dendritic nonlinearities were accounted for in our optimizations and model generation, it has to be 
remarked that the actual experimental data considered were somatic intracellular responses to stereotyped 
current injections. Given this experimental setup, information about exact dendritic events and processes 
remains limited as the dominating events under these conditions are due to somatic electrogenesis. This is 
particularly true for dendritic events occurring many hundreds of micrometers away from the soma. In our 
optimizations the spatially constant distribution of Ih channels (hyperpolarization-activated cation current) 
reported for layer 5 pyramidal neurons in mouse V1 was taken into account (Shai et al., 2015). Yet, it remains 
unclear whether such constant spatial scaling applies for the other nonlinear dendritic conductances. Finally, in 
this version of the all-active product the apical Ca hotzone located close to the main apical bifurcation known to 
elicit dendritic Ca2+-spikes was not taken into account (Shai et al., 2015).  
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